Artificial Electromagnetic Materials Art & Entertainment

Artificial electromagnetic materials are material materials that control light in an unusual way at nanoscale. They can be used to develop foreign equipment such as invisible cloaks to quantum computers. But the problem is that the metamaterials they use usually contain metals that absorb energy from light and convert it into heat. As a result, a portion of the optical signal is wasted, reducing the efficiency of the device. A photonics laser research team led by Shaya Fainman, an electrical engineering professor at the University of California, San Diego, demonstrated the use of metallic materials that add excitation light to compensate for these optical losses, an optical semiconductor.
With the continuous development of laser technology and maturity, high powered laser pointer equipment has been widely used in all walks of life, such as laser marking machine, laser welding machine, laser drilling machine and laser cutting machine, etc., especially CNC burning laser pointer cutting machine Equipment, in the rapid development of the past few years, is widely used in sheet metal, metal products, steel structures, precision machinery, auto parts, glasses, jewelry, nameplate, advertising, crafts, electronics, toys, packaging and other industries. Cutting speed, cutting quality, high precision; slit narrow, smooth cutting surface, does not damage the workpiece; not affected by the shape of the workpiece, the workpiece is not affected by the shape of the workpiece, Saving materials, more effective cost savings; simple, safe, stable performance, improve the new products. In addition to the metal material processing, Development speed, with a wide range of adaptability and flexibility.
Laser marking machine advantages: laser beam mode is good, the electro-optical conversion efficiency, low power consumption, maintenance-free; some optoelectronic measurement equipment manufacturers measuring the laser light source from the initial He-Ne burning laser pen diode laser to obtain The best machine life (He-Ne laser life is generally 10 ^ 4HR, and diode laser life is 10 ^ 5HR, a difference of ten times), especially suitable for on-site long-time operation; instantly can achieve the role of switches, suitable for communication purposes.
The emergence of laser inkjet printer to a certain extent, shorten the gap between China and the developed countries in this area, but in order to really catch up with developed international, domestic enterprises must innovation, speed up technological reform. From the current customer demand, equipment maintenance rate is low, print speed, content, automatic cleaning easy, simple and quick operation will become the future development trend of Pen Maji a major trend. For the 5000mw green laser inkjet machine industry, in order to continue to grow and develop, we must take the international development path, and the international laser inkjet printer market synchronization, developed with independent intellectual property rights of new results, rapid access to R & D commercialization.
Encryption is an important part of modern life, so that sensitive information can be safely shared. In traditional encryption technology, the sender and receiver of a particular message determine the password, or the key, so only those who know the key can decrypt the information. But as computers become faster and more powerful, encryption passwords become easier to crack. Quantum cryptography guarantees "unbreakable" security by hiding information into light particles or photons emitted from the 3000mw laser pointer. In this cryptographic form, quantum mechanics is used to randomly generate a key. The sender, commonly known as Alice, sends the key by polarizing the different polarized photons. The receiver, commonly referred to as Bob, uses a photon detector to measure the polarization direction of the photon, and then the detector converts the photon into bit information, assuming that Bob uses the correct photon detector in the correct order, Get the key.
Laser cutting is a kind of high energy density controllable non-contact processing. It focuses the laser beam into a spot with a minimum diameter of less than 0.1mm, so that the power density at the focal point can exceed 107W to 108W / cm ~ 2. The irradiated material is quickly heated to the vaporization temperature and evaporated to form pores. As the 1000mw green laser beam moves relatively linearly with the material, the apertures are continuously formed with slits of about 0.1 mm in width. The cutting also adds auxiliary gas to the material to be cut to accelerate the melting of the material, blown away the slag or protecting the slits from being oxidized.

laser pointer









▲ PageTop